Regiospecific Syntheses of d1-Phyllostine and d1-Epoxydon (Phyllosinol)

Akitami Ichihara, Kengo Oda and Sadao Sakamura Department of Agricultural Chemistry, Faculty of Agriculture

Hokkaido University, Sapporo, Japan

(Received in Japan 1 November 1972; received in UK for publication 13 November 1972)

Previously we reported a synthesis of dl-phyllostine $\frac{1}{2}$ and conversion of epoxydon²⁾ $\frac{1}{2}$ (phyllosinol³⁾) to other minor constituents isolated from culture broth of phyllosticta sp⁴⁾. In this communication we would like to describe regiospecific syntheses of dl-phyllostine $\frac{1}{2}$ and dl-epoxydon $\frac{1}{2}$ (phyllosinol), both of which are physiollogically active compounds among highly oxygenated cyclohexane derivatives occurred naturally⁵⁾.

$$\begin{array}{c} \text{HOCH}_2 \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{1} \end{array}$$

2-Hydroxymethyl-1,4-benzoquinone 3 prepared from gentisyl alcohol⁶⁾ was treated with dihydropyrane and p-toluenesulfonic acid in anhydrous ether to give quantitatively pyranylated compound $\underline{4}$, m.p. 69.4 ~71.1 °C⁷⁾, $C_{/2}H_{//4}O_{/4}$, ir \mathcal{D}_{max}^{KBr} 3050, 1650, 800, 815 cm^{-/}; nmr \mathcal{T} 8.35 (6H, br.s., -CH₂-), 6.70 6.20 (2H, m., R-CH₂CH₂O-), 5.83, 5.45 (2H, d.d., J=16, J=2 Hz, AB part of ABX system -CH₂-O-), 5.35 (1H, s., $O_{H}O_{/}$) 3.33 (3H, br.s., $O_{H}O_{/}$) . Epoxidation⁸⁾ of the pyranylated benzoquinone $\underline{4}$ with sodium perborate solution adjusted at pH 8.5 with acetic acid in ethanol-water afforded regiospecifically an epoxide $\underline{5}$, m.p. 106.9 ~111.8 °C,

 $C_{/2}H_{/4}O_5$, M⁺m/e 238, ir) KBr 1685, 810, 790 cm; nmr $\stackrel{C_{1}}{\leftarrow}$ 8.35 (6H, br.s., -CH₂-), 6.40 (2H, m., -CH₂O-), 6.20 (2H, s., $\stackrel{C_{1}}{\leftarrow}$) 5.60 (2H, s., $\stackrel{C_{1}}{\leftarrow}$), 5.35 (1H, s., $\stackrel{C_{1}}{\leftarrow}$), 3.30 (1H, s., $\stackrel{H}{\rightarrow}$), in 40% yield, though direct epoxidation of 3 under the same conditions described above yielded a mixture consisting of equal amount of phyllostine and an isomeric epoxide $\stackrel{1}{\rightarrow}$ 6.

Removal of pyranyl group of the epoxide $\underline{5}$ with p-toluenesulfonic acid in ethanol heating at $40\sim50\,^{\circ}\text{C}$ for 2 hr produced d1-phyllostine $\underline{1}$, m.p. 48.0 - 48.5 C C_7 H₄O₆, which was perfectly identical with natural phyllostine in all respects. The synthesis of d1-epoxydon was completed as follows 9° . The pyranylated phyllostine $\underline{5}$ was treated with sodium borohydride in tetrahydrofuran-methanol to give a stereoisomeric mixture of the diols $\underline{7}$ in 63% yield 10° : ir $\frac{10^{\circ}\text{C}}\text{max}$ 3400 cm⁻¹, no carbonyl absorption; nmr $\frac{10^{\circ}\text{CDCls}}\text{CDCls}$ 4.50 (1H, d., $\frac{10^{\circ}\text{C}}\text{H}$). The mixture of diols $\frac{7}\text{C}$ was acetylated with acetic anhydride in pyridine to yield quantitatively diacetates $\frac{8}{9}$, ir $\frac{10^{\circ}\text{C}}\text{max}$ 1740 cm⁻¹; nmr $\frac{10^{\circ}\text{CCl}}\text{C}$ 8.00 (6H, s., CH₃CO), 4.50 (3H, m., $\frac{10^{\circ}\text{H}}\text{max}$ and 2-CHOAc). Treatment of the diacetates $\frac{8}\text{C}$ with p-toluenesulfonic acid in methanol gave hydroxy diacetates $\frac{9}{9}$, ir $\frac{10^{\circ}\text{C}}\text{max}$ 3400 cm⁻¹; nmr $\frac{10^{\circ}\text{C}}\text{C}$ 6.18 (6H, s., 2CH₃CO), 6.75 (2H, s., $\frac{10^{\circ}\text{C}}\text{C}$), 6.25, 6.10 (2H, ABq., J=15 Hz -CH₂-O), 4.35-4.43 (3H, m., $\frac{10^{\circ}\text{C}}\text{C}$) and 2-CHOAc), in 70% yield. It was expected that of the

two acetoxyl groups in the diacetates 9, the one at C-l could be selectively hydrolyzed by neighboring group participation of the hydroxyl group at C-711). In fact, hydrolysis of 9 with potassium bicarbonate (0.8 eq) in tetrahydrofuranmethanol-water (5: 3: 2) at room temperature afforded regiospecifically hydrolyzed products 10, nmr T^{CDC1} 7.93 (3H, CH₃CO), 4.10 4.85 (2H, m., \neq and -CH-OAc). The evidence that the hydrolysis occurred selectively at C-1 position was obtained by the fact that in later stage, compound 12 exibited a signal at τ 3.52 ascribable to a β -proton of α , β -unsaturated ketone in the nmr spectrum. Reaction of 10 with tritylchloride in pyridine at room temperature yielded trityl derivatives $\underline{11}$, ir V_{\max}^{film} 1600, 1480; τ^{CDCl_3} 7.96 (3H, s., CH₃ ∞), 6.44 \sim 6.66 (2H, m H O H), 6.32 (2H, ABq., J=15 Hz -CH₂-O), 2.50 3.10 (15 H, m., ArH) in 60% yield. Oxidation of 11 with manganese dioxide in benzene at room temparature and subsequent purification by column chromatography using silicic acid gave a a, β -conjugated ketone 12, a more stable isomer which might be resulted from equilibrium at C-4, m.p. 124.6 \sim 125.5, C₁₈ H₂₄O₅; ir $\bigvee_{\text{max}}^{\text{KBr}}$ 1738, 1685 cm⁻¹; nmr T ccl4 7.80 (3H, s., CH₃CO) 6.75 (1H, d., J=4 Hz, 🗠) 6.32, 6.09 (2H, t. of ABq., J=16Hz, -CH₂-O), 6.28 (1H, m., OV^H), 4.35 (1H, m., -CHOAc) 3.52 (1H, m., H), 2.50 3.10 (15H, m., ArH) in 88% yield. Treatment of the tritylacetylepoxydon 12 with p-toluenesulfonic acid in methanol afforded dl-epoxydon, m.p. $60.1\sim$ 61.7 , $C_7H_8O_4$, which was identical with the natural specimen in ir and nmr spectra and behaviors on TLC.

References and Footnotes

- a, S. Sakamura, J. Ito and R. Sadai, <u>Agr. Biol. Chem.</u>, <u>35</u>, 105 (1971).
 b, A. Ichihara, K. Oda and S. Sakamura, <u>Agr. Biol. Chem.</u>, <u>35</u>, 445 (1971).
- 2) A. Closse, R. Mauli and H.P. Sigg, Helv. Chim. Acta. , 49 , 204 (1966).

- 3) S. Sakamura, H. Niki, Y. Obata, R. Sakai and T. Matsumoto, Agr. Biol. Chem., 33, 698 (1969). The identity of Phyllosinol with epoxydon had been confirmed by direct comparison of their spectroscopic data.
- 4) S. Sakamura, K. Nabeta, S. Yamada and A. Ichihara, Agr. Biol. Chem., 35, 1639 (1971).
- 5) Terreic acid: J.C. Sheehan, W.B. Lawson, and R.J. Gaul, J. Amer. Chem. Soc.,

 80, 5536 (1958). Crotepoxide: S.M. Kupchan, R.J. Hemingway, and R.M. Smith.

 J. Org. Chem., 34, 3898 (1969). Senepoxide and Seneol: F. Hollands, D. Becher,

 A. Gaudemer, J. Polonsky, and N. Ricroch, Tetrahedron, 24, 1633 (1968).
- 6) A. Brack, Helv. Chim. Acta., 30, 1 (1947).
- 7) Satisfactory micro analytical results were obtained for all crystalline compounds.
- 8) A. Rashid and G. Read, J. Chem. Soc., (C), 1323 (1967).
- 9) An attempt obtaining epoxydon by direct reduction of 5 with one equivalent amount of sodium borohydride was failed because of selective formation of ii which might be resulted from an intermediate i.

- 10) The stereoisomers in compounds $\underline{7} \sim \underline{11}$ were not separated, since the asymmetric center at C-1 is eliminated in compound 12.
- 11) Further examples for application of neighboring hydroxyl group participation, see A. Ichihara, H. Shirahama, and T. Matsumoto, <u>Tetrahedron Letters</u>, 3965 (1969). T. Matsumoto, H. Shirahama, A. Ichihara, H. Shin, S. Kagawa, and F. Sakan. Tetrahedron Letters, 1171 (1970).